Pure Titanium Powder

$0.00

Pure Titanium Powder

Product  Pure Titanium Powder
CAS No. 7440-32-6
Appearance Silvery Powder
Purity ≥99%,  ≥99.9%,  ≥95%(Other purities are also available)
APS 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range.
Ingredient Ti
Density 4.54g/cm3
Molecular Weight 47.86g/mol
Product Codes NCZ-DCY-314/25

Pure Titanium Description:

Pure Titanium Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.

Pure Titanium Powder Related Information :

Storage Conditions:

Airtight sealed, avoid light and keep dry at room temperature.

Please contact us for customization and price inquiry

Email: [email protected]

Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters.

Pure Titanium Powder

Titanium powder is a metal powder made from titanium metal. It is characterized by its high strength-to-weight ratio, corrosion resistance, and biocompatibility. Titanium powder has diverse applications across industries such as aerospace, medical, automotive, and consumer products.

Overview of Pure Titanium Powder

Titanium powder is a metal powder made from titanium metal. It is characterized by its high strength-to-weight ratio, corrosion resistance, and biocompatibility. Titanium powder has diverse applications across industries such as aerospace, medical, automotive, and consumer products.

This article provides a comprehensive guide to titanium powder. It covers the composition, properties, applications, specifications, suppliers, handling, inspection, comparisons, pros and cons, and frequently asked questions about titanium powder. Quantitative data is presented in easy-to-read tables for quick reference.

Composition of Titanium Powder

Titanium powder can be pure titanium or an alloy containing titanium as the main element. The composition determines the properties and applications.

Composition Details
Pure Titanium Contains >99% titanium. Lowest strength but excellent corrosion resistance.
Ti-6Al-4V 6% aluminum, 4% vanadium. Most common titanium alloy with high strength.
Ti-3Al-2.5V 3% aluminum, 2.5% vanadium. Higher ductility than Ti-6Al-4V.
Ti-6Al-7Nb 6% aluminum, 7% niobium. Higher strength for aerospace applications.
Ti-15Mo-3Nb-3Al-0.2Si 15% molybdenum, 3% niobium, 3% aluminum, 0.2% silicon. Beta titanium alloy.

Titanium powder can also be blended with other elemental powders like iron, aluminum, or boron to create customized alloys.Properties of Titanium Powder

The unique properties of titanium make it suitable for demanding applications across industries.

Property Description
High strength Has excellent strength-to-density ratio, close to high strength steels.
Low density Weighs 60% less than steel or nickel alloys.
Corrosion resistance Forms stable TiO2 oxide film for corrosion protection.
Biocompatibility Non-toxic and compatible with human body tissues.
Heat resistance Maintains mechanical properties up to 600°C.
Non-magnetic Useful for non-magnetic applications.
Non-sparking Safer for flammable environments compared to steel.

The properties can be tuned by changing the composition, grain size, porosity, and processing method.

Applications of Titanium Powder

The versatile properties of titanium powder enable unique applications in the following industries:

Industry Applications
Aerospace Engine components, aircraft structures, space vehicles
Medical Implants, surgical instruments, medical devices
Automotive Connecting rods, valves, springs, fasteners
Chemical Corrosion resistant vessels, heat exchangers, pipes
Sporting goods Golf clubs, tennis rackets, bicycles, helmets
Additive manufacturing Aerospace, automotive, and medical 3D printed parts

Titanium’s biocompatibility makes it ideal for implants and medical devices. Its corrosion resistance suits it for seawater applications. The high strength is useful for critical components in aerospace.

Specifications of Titanium Powder

Titanium powder is available in different size ranges, shapes, purity levels, and composition to suit specific applications.

Parameter Specifications
Particle sizes 15-45 microns, 45-105 microns, 105-250 microns
Particle shape Spherical, angular, mixed morphology
Purity Grade 1 (99.2% Ti), Grade 2 (99.5% Ti), Grade 4 (99.9% Ti)
Alloy grades Ti-6Al-4V, Ti-6Al-7Nb, Ti-64, Ti-1023
Production method Gas atomization, plasma atomization, hydride-dehydride

The particle size distribution, morphology, oxygen/nitrogen content, and microstructure are controlled as per application requirements.

Handling and Storage of Titanium Powder

Special precautions are needed when handling titanium powder to prevent fires, explosions, and property damage:

Store in cool, dry, inert environments away from moisture, sparks, and flames

Use conductive containers grounded to prevent static charge buildup

Local exhaust ventilation is recommended to control dust

Avoid dust accumulation to minimize explosion hazard

Wear dust masks, safety goggles, gloves to prevent inhalation and skin contact

Follow material safety data sheet (MSDS) instructions for safe handling

Inspection and Testing of Titanium Powder

Titanium powder batches are tested to ensure they meet the required material specifications:

Test Method Parameter Measured
Sieve analysis Particle size distribution
Laser diffraction Particle size distribution, mean size
Scanning electron microscopy Particle morphology, microstructure
Energy dispersive X-ray spectroscopy Chemical composition
X-ray diffraction Phase composition
Spectrophotometry Oxygen, nitrogen, hydrogen content
Tap density Apparent density, flowability
Pycnometer Skeletal density

Sampling and testing as per ASTM standards ensures titanium powder quality for critical applications.

Comparing Titanium Powder to Alternatives

Titanium has advantages and disadvantages compared to substitute materials:

Titanium Aluminum Stainless Steel
Density Low Lower Higher
Strength High Medium High
Corrosion resistance Excellent Good Good
Temperature resistance Good Medium Better
Cost High Low Medium
Magnetic permeability Low Low High
Biocompatibility Excellent Poor Good

Titanium stands out for its corrosion resistance and biocompatibility despite its higher cost. Aluminum and stainless steel may be cheaper alternatives depending on application requirements.

Pros and Cons of Titanium Powder

Pros Cons
High strength-to-weight ratio Expensive compared to steels
Corrosion resistant Reactivity with oxygen at high temperatures
Non-toxic and non-allergenic Low elastic modulus can mean springback in machining
Excellent biocompatibility Low thermal conductivity
Retains properties at high temperatures Requires inert atmosphere processing
Wide range of alloying possibilities Limited high temperature strength

Titanium powder enables lightweight, strong parts but requires controlled handling and processing. Cost is higher than conventional alloys.

Frequently Asked Questions about Titanium Powder

Here are answers to some common questions about titanium powder:

Q: What is titanium powder used for?

A: Titanium powder has uses across aerospace, medical, automotive, chemical, and sporting goods due to its high strength, low weight, corrosion resistance, heat resistance, and biocompatibility. It is commonly used for critical rotating parts in aircraft engines, orthopedic implants, automotive components, heat exchangers, and additively manufactured parts.

Q: Is titanium powder safe to handle?

A: Titanium powder can ignite and explode when very finely divided and exposed to air. Proper grounding, inert atmosphere, ventilation, and protective equipment are essential when handling titanium powder. It is also non-toxic and hypoallergenic on skin contact.

Q: What is the difference between Grade 1 and Grade 5 titanium powder?

A: Grade 1 titanium powder has higher purity with lower oxygen and iron content compared to Grade 5. Grade 1 provides better corrosion resistance while Grade 5 offers higher strength. Grade 5 powder would be used where strength is critical while Grade 1 suits chemical resistance needs.

Q: Does titanium powder rust?

A: Titanium forms an impervious and self-repairing oxide layer that protects it from rusting and corrosion. It exhibits excellent corrosion resistance in most environments including saltwater. This property makes it suitable for marine applications.

Q: Is titanium powder magnetic?

A: No, titanium powder is non-magnetic. Its relative magnetic permeability is very close to 1 which makes it useful for non-magnetic applications instead of ferritic steels.

Q: What is the cost of titanium powder?

A: Titanium powder can range from $50/kg to $500/kg depending on purity, particle size, production method, morphology, and order volume. High purity grades suitable for medical use are more expensive. Custom alloys and special particle shapes also cost more.

Q: What is the difference between gas atomized and hydride-dehydride titanium powder?

A: Gas atomized titanium powder has a spherical morphology ideal for additive manufacturing while hydride-dehydride powder has an angular, irregular shape suited for pressing-and-sintering. The powder properties, surface chemistry, microstructure and cost differ for the two production methods.

Q: How is titanium powder produced?

A: The main production methods are gas atomization, plasma atomization, and hydride-dehydride process. Gas atomization using argon or nitrogen gas is a common method to produce fine spherical powder for AM. The hydride process generates angular powder for pressing into shapes before sintering. Plasma atomization can produce very fine spherical powders.

Q: What are the contents of a titanium powder material safety data sheet (MSDS)?

A: The MSDS will have health hazard information, reactivity data, toxicological data, handling precautions, storage information, spill procedures, firefighting instructions, first aid measures, and disposal guidelines. It is critical to review the MSDS before working with any amount of titanium powder.

Q: What standards apply to titanium powder?

A: Key standards include ASTM B833 for spherical titanium powder, ASTM B981 for titanium alloys for powder metallurgy, ASTM B988 for gas atomized titanium alloy powder, and ISO 22068 for additive manufacturing with titanium alloys. The specifications cover sampling, testing, size analysis, chemical analysis, and quality assurance.

Description

Description
Note: For pricing & ordering information, please get in touch with us at [email protected]
Please contact us for quotes on Larger Quantities and customization. E-mail: [email protected]

Customization:
If you are planning to order large quantities for your industrial and academic needs, please note that customization of parameters (such as size, length, purity, functionalities, etc.) is available upon request.

NOTE:
Images, pictures, colors, particle sizes, purity, packing, descriptions, and specifications for the real and actual goods may differ. These are only used on the website for the purposes of reference, advertising, and portrayal. Please contact us via email at [email protected] or by phone at (+1 780 612 4177) if you have any 

Reviews (0)

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shipping & Delivery